Slow Mixing for the Hard-Core Model on Z^2

Dana Randall, Georgia Institute of Technology

The hard-core model has attracted much attention across several disciplines, representing lattice gases in statistical physics and independent sets in discrete mathematics and computer science. On finite graphs, we are given a parameter α parameter α parameter α independent set α arises with probability proportional to α proportional to α are interested in determining the mixing time of local Markov chains that add or remove a small number of vertices in each step. On finite regions of α it is conjectured that there is a phase transition at some critical point α it is approximately α . It is known that local chains are rapidly mixing when α is approximately α . We give complementary results showing that local chains will mix slowly when α in α in α in α in α with periodic (toroidal) boundary conditions and when α in α with non-periodic (free) boundary conditions. The proofs use a combinatorial characterization of configurations based on the presence or absence of fault lines and an enumeration of a new class of self-avoiding walks called taxi walks.